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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL MEMORANDUM 1290

THE STRUCTURE OF AIRY‘S STRESS FUNCTION IN MULTIPLY

The determination of

CONNECTED REGIONS* .

By Giusippe Grioli

the stress state in a plane, homogeneous, and
isotropic elastic system with assigned forces on the boundary and in
the “absenceof body-forcesl is known to lead, for the cases of both
plane forces and strains, to the investigation of a biharmonic function,
namely, the Airy function.

With the aid of this function, various investigations have been
conducted, particularly on elasticity problems of plane simply or doubly
connected stress systems.

In attempting to establish a systematic treatment of the problem
of elastic equilibrium of a plane homogeneous and isotropic system of
any shape and possessing any order of connectivity, the first step is
to determine the singular terms (absent in a simply connected system)
of Airy function in the most general case of stress and strain; on the
basis of their significance, it may be decided which of these terms
remain in various applied cases.

It is therefore proposed to isolate the singularities of the Airy
function for a general plane system and to show how these functions are
“connectedby their mechanical properties with the state of strain and
stress of the elastic system.

*“Strutturadella funzione di Airy nei sist,emi
connessi.” Giornale di l@.tematiche,Vol. 77, 1947,

lb cases of interest in which body forces are
example, for constant body forces (gravity forces),
reduced to one without these forces by changing the
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A special decomposition of the Airy function
for simplicity of presentation, the following two
be distinguished:

(a) systems subjected toa plane dislocation
state of stress with zero forces on the boundary

is therefore given;
different cases will

and therefore to a

(b) systems subjected to an external stress of a general type, but
in the absence of dislocation (one-valued displacements)

It is evident that from the two compositions corresponding to cases
(a) snd (b) the one is immediately obtained that corresponds to the
general case of a plane system in which the state of deformation is the
resultant of those deformations due to a general external stress and a
plane dislocation.

For a plane dislocation, only the components of the displacement
parallel to the plane of the system are considered herein. Such a dis-
placement results when, after the cuts that decrease the order of con-
nectivity of the system are made, one of the faces of each single cut
is given a displacement relative to the other faces. The displacement
is composed of a translation parallel to the plane of the system and a
rotation about an axis perpendicular to this plane; a certain quantity
of naterial is then added or subtracted, as the case may be2.

Treatment of the problems of plane dislocations with the aid of the
Airy function seems natural, because the determination of the states of
strain and of stress of a system subjected only to dislocation leads
essentially to the problem of the integration of the equations of elas- ~
tic equilibrium with assigned forces at the boundary.

In the two decompositions presented, some of the singilar parts
figure directly as known elements in that their coefficients maybe
expressed in terms of assigned elements characteristic of the state of
stress and strain to which the system is subjected. That is, among the
coefficients of the singular terms, the characteristics of the dis-
location figure in case (a); whereas in case (b), the components of the
resultant forces and the resultant moments of the external stresses
acting on the boundaries of the individual holes are involved.

‘Results on the plane dislocations of a circular ring will be found
in references 1 and 2.
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For the first case, the expression given by the Airy function satis-
fies the condition of many valuedness of the required displacements from
the dislocation considered; the condition of single-valuedness of the
displacements is satisfied in the second case. The analytical problem
that remains to be solved therefore reduces in each case to a boundary
problem similar (but not identical) to that to which simply connected
systems are reduced.

It was also desired to show that even those coefficients of the
singular terms that are.not directly known are expressible in terms of ]/

.,

characteristic elements of the deformation and that their invariance
1-with respect to certain curves, with reference to which they are defined, j

corresponds to mechanical properties common to all continuous systems ~
at rest, the known properties of the mean stress.

In order to determine the character of the single-valued part of
the Airy function in the two cases considered, a special decomposition
of the biharmonic functions is employed in the manner of Poincar~. This
decomposition was established several years ago by G. Fichera (refer-
ence 3) and was found to be very useful for the purpose.

The many-valued part was determined by direct considerations, but
it is necessarily present if, and only if, the acting forces on each
singular boundary do not constitute a system in equilibrium.

From the given decomposition for the Airy function, those components
of the displacement and of the rotation from which the singularities
appear sxe derived without difficulty. It is thus possible to treat
systematically also problems concerning systems in which the displace-
ments as well as the forces are assigned on the boundary or partly the
displacements and partly the forces (mixed problems). Such decomposition
formulas are given subsequently.

For simplicity, a doubly connected system will first be presented;
the results will then be extended to a system of any order of con-
nectivity.

The essential concepts of the theory of elastic dislocations that
is used herein are directly derived from the fundamental investi~tions
of Vito Volterra3.

3Published in various notes in the reports of the R. Accademia dei
Lincei in the years 1905-1906 and collected in one memoir in reference 4.
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The author wishes to express his sincere thanks to Signora Virginia
Volterra, widow of Vito Volterra and to his son Prof. Enrico Volterra
who kindly furnished him with the Italian and French editions of the
papers.

1. Many-Valuedness

Assuniethe plane system defined

of Airy Function

in a region T bounded externally bv
the curve CO, internally by the curve Cl and referred to a pair of “
orthogonal axes OxjOy with origin inside the area enclosed by Cl.

For the Airy function F(x,y) the following formulas are well
known:

a2F a21jI a2F
xx=— 3Y2 ‘Y ‘~ xY=yx=-sy (1)

with the usual significance of the symbols.

For any curve Z the tangent and norml vectors denoted by t and
n, respectively, are oriented so that the pair t,n is superposable in
a rigid displacement of the plane on the oriented pair, -xjy.

There is then obtained

d-x
‘Y = -=

(2)

If Xn, Yn denote the components of the specific force corresponding
4 from the for-to any point of 2 and in the oriented direction of n,

mulas

Xn

}

‘xxnx+xYnY

‘n=xynx+yyhy (3)

4Specifically, &~ yn refer to the actions that the molecules situ-
ated on the issuing side of the boundary exert upon the molecules on the
other side.
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and from equations (1) and (2] there is immediately

-

I
I

If Mn denotes the moment with respect to the
coordinates z, of the vector of components Xn,Yn,
equations (1) to (3)

obtained

(4)

Mn=xYn-
[

yXn=-&F 1-’s+

third axis of
there follows from

(5)

In the following discussion, c will denote any closed curve con-
tained in T and inclosing Cl. When n is identified with the outer
normal, the positive direction of transversing the curve, that is, the
direction of t, is then such as to leave the area to the left.

By making 2 coincide with c there is obtained from equations (4)
and (5)5

10 1+=-x
c

J’()+ =Y

c
(6)

(7)

%?ormulas (6) and (7) are in accordance with a property of the Airy
function aJready brought to light. (See reference 5.)

m■ a■ ■ ■ ImIImI nm mII I m I ImmImII
,_
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where X and Y denote the components of the resyltant of the forces
transmitted across the curve c from the interior toward the exterior
and M is their resultant moment with respect to z.

h the absence of body forces, however, X,Y,M are the corres-
ponding components of the resultant force and moment of the external
stress acting on the boundary Cl of the plane system. It is clearly
shown in equations (6) and (7) that, in the presence of external stress
of a quite general type, the expressions contained under the differ-
ential sign are necessarily many-valued. It follows that the function
F(x,y) and the first derivatives will in general be many-valued, but
second derivatives will be single-valued (on account of their signi-
ficance as stresses).

If the two functions satisfying equations (6) and (7) are denoted
by Wlj $2) the function ‘!l-V2)together with its derivatives) is
necessarily single-valued,which is sufficient to assure that F is
of the type

F(x,y) =~(X,y) + ~’(X,y) (8)

with 9(x,Y) single-valuedand ~’(x,y) uniquely determined from
equations (6) and (7).

When O = arctan.y/x, the many-valued function wO/2fi (harmonic
and with single-valued derivatives) satisfies equation (7). It is then
found immediately that $’(x,Y) corresponds to the product of e by
a linear function of x,y, the coefficients of which are
taking into account equations (6) and (7).

There is thus found

where

is the resultant moment
external forces applied

Mp=M+yX-

with respect to
to cl.

XY

the pole p(x,Y)

determined by

(9)

(lo)

of the
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On the basis
given the form

.—

of

2. Decomposition

It will be very

7

equations (8) md (9), the Airy function can now be

(u)

of the Single-Valued Part of the Airy Function

useful in the following discussion to adopt for the
function cp(x,y) the decomposition formula of Poincar~ (see ~aper by
Fichera already referred to) and to write

‘T(%Y) =go(%Y) +q@Y) + [ 1
q2+px+rY+5 logp+

a cos 2G + b ain 2e (12)

The functions q0(x,y),91(xJY) are biharmonic, the first regular
at all points not external to the region bounded by Co,
regular at all points not internal to the region bounded
converging at infinity.

In agreement with the notation adopted in reference

r n o

and the second
by Cl and

3 referred to,

where, if

depend on
expressed

U,V are biharmonic in T, the value of cp[u,v;c] does not

the curve c, and the constants ay PJ T, 5, a, and b are
by the formulas

a.=@[cp,l;c]

1

15=Q[cp,pz;c

i3=- 20[q,x;q [14 ql,pza=-
2 1cos 2e;C )

~“= “-2@C~Jyj~ db = ~6[q,p2 sin’%;c (14)
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3. Expressions of Components of Displacement

If exj eyj e~ are the strains, u the rotation, U,V the colu-
ponents of the displacement, following well-known formulas6 may be
written:

au
x=ex

av I- av Jam aey l%y—= &Y+~ —=
ax ay ‘Y z= &r-— 2 ay

(15)

where ex, ey, eW are connected with Xx) Y ,
Y%

by the relations7

where

k
{

=1
= 1-$

ex=~(Xx-TYy)

ey .:(YY-T XX)

ew=2 1$ Xy I
in the case of plane stress
in the case of plane strain

(16)

(17)

‘r

[

=V in the case of plane stress
. v/(1-v2) in the case of plane strain (18)

6(See, for example, reference 6.)

7(See, for example, reference 7.)

,,, .-., . .... . ..— .-. .,.-—. , ,,,-., , “
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In equations (16) to (18), V
Young’s modulus.

From equations (l), (15), and

and

h

By denoting now as 2
points P. S (Xo,yo) and
written:

J

uxiq
2

denotes Poissonts ratio and E,

(16) there follows immediately

k&lF.—
~=-Eay

b k&N?—= ——
by E bX

any line internal to T
P z (x,y), the following

‘w J-?-Jo (Do- @LJ.)
2

where q denotes either of the variables x,y.

(19)

(20)

that unites the
expression may be

(21)

Bearing in mind by means of equations (19) to (21), there is
obtained with some transformations
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U(x,y) = ‘(xoJyo) - ~ LD(x,y) - Yo m(xo,Yo~ +

[ 1V(x,y) = V(xo,yo)+ x CD(x,y) - Xo (m(xo,yo) -t (22)

4. Airy Function Corresponding to Plane Dislocation in
Doubly Connected Field

With reference to case (a) of the introduction, the system is now
assumed subjected to a state of strain due to a plane dislocation. In
the decomposition of the Airy function definedby equations (lo) to (12),
the constants CL,P, andy will be shown to represent the three
characteristics of the plane dislocation as determined by the latter
equation.

In order to show this relation, it is first observed that from
equation (22) the necessary and sufficient conditions for the single
valuedness of the components of the displacement and of the rotation
are clearly expressed by
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!(23)

The functions To (x,Y) andql (x,y) from their nature8 satisfy equa-
tion (23).

.
Because the functions of log p and 9 are also harmonic and

moreover because log p is single valued with its derivatives and 9
is many valued, but with first derivatives single-valued, the two terms
behave similarly.

It is not difficult to show, by substituting, that also the func-
tions cos 26 and sin 29 satisfy equations (23).

8This is clear for equation (23.1) on the basis of a known theorem,
if it is assumed that the functions LXPo and A% are harmonic. As
regards equation (23.2), it is noted that on the basis of equations (2),

from which, by taking into account the biharmonic character of F the
expression on the left of this equation is proved an exact differential.
The left member of equation (23.2) is of the form of integrals of exact
differentials. From the fact that Qo has for its field of regularity
the region enclosed by Co, it is then concluded”that the left side of
equation (23.2) vanishes for F- cpo. The same result is obtained for
F~Vl if’it i’sconsidered that its field of regularity is composed of
all the points of the plane not internal to the region enclosed by Cl.

Similar considerations apply to equation (23.3).
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Because of the properties
si,onof the Ai~ function (see
contained in the expression

of the terms that enter in the expres-
equations (10) to (12)), only those

F*(x,y) =(ap2+13x+yy) logp+#-[xY-yX]6 (24)

give rise to many-valued displacements.

The increments receivedby u(x,Y), v(x,Y), and U(X,Y) are
denoted by u*, @, and U*, respectively. When a complete circuit
(started from the point of coordinates x,y) is effected about the
hole, equations (22) that ~*/k, E(u* + y~*)/k, -E(v* - m*)/k
agree with the values assumed by the first members of equation (23)
for F(x,y) ~ F*(x,Y).

If this result is taken into account, it is found from equa-
tions (23) and (24) that

Lk–U* = - zfi— 1 -T
E 14ay+2~-x Y

V* = 2.J(
[ 1:4ax+2j3-~X

1

(25)

)
Because a state of strain with surface forces (except for body

forces) at the boundaries corresponds to each dislocation, there must
beset X=Y=O. From eq~tions (25) the result is then obtained:
The three characteristics of the plane dislocation (constants of the
cut).are given by

k
-411~y

4+3

k
-8fiEa
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The first two characteristics correspond to psrallel fissures and the
third to a radial fissureg.

These fissures are assumed to be assigned on the basis of the par-
ticular dislocation considered so that, when they are denotedby Z,
m, and r, the following expression is obtained: Corresponding to
a general plane dislocation of characteristics Z, m, and r the
Airy function in a doubly connected field is capable of the decompo-
sition

F=~o+~l+_&
4fik[

-;pz+mx
1

-Zylogp+

blogp+acos2G+b sin 26 (26)

The unknown part
tion (26) is uniquely
the complete boundary

~=F-F* of the right-hand side of equa-
determined by the condition that the forces on
of the plane system are zero.

Explicitly on the basis of equation (4) this condition is given
by the equations

) on Co and Cl

aF bF*-—
~ = ay + ConSt” J

‘It is evident that these definitions give an immediate generaliza-
tion of those used in the work of V. Volterra in the case of a field
having the form of a circular ring. That is, the dislocation wiil be
said to correspond to a uniform fissure when the displacement that
generates it is a translation and to a radial fissure when the displace-
ment is a rotation.
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Airy Function in the Case of Single-Valued Displacements
in Doubly Connected Field

the element,sare now at hand for determining the structure of
function in the absence of dislocations corresponding to any
stress. “The coefficients u,

determined. In fact, the conditions of
tion (23), which are more synthetically

u* = o,

on the basis of equation

a=O, Y

From these relations and
result is obtained: The

v* = o,

(25) lead to

= (1-T)Y/4fi,

from equations

p, and y will now also be
single-valuedness in equa-
expressed by

U*=O

p = (1-T)x/4fl

(10) to (12), the following
Airy function in the case of single-valued

displacements in a doubly co&ected
tion

F=qo+~1+510gp+ aces

field is capable of t~e decomposi-

26 +

Yy)+ log p -

Remark. It is sufficient to glance

1
bs=n2e+zi {

(xx+

Mp e
}

(27)

at equation (27) in order to
derive the necessary and sufficient condition that the Airy function
of a doubly connected system free from restraints does not depend, in
the absence of dislocations, on the elastic constants of the system
and that the external forces applied at the boundary of the hole have
a zero resultant. The same is naturally true for the stresses.

6. Structure of the Airy Function in Multiply Connected Systems

The preceding considerationswill now be extended to the case of
a plane system of any number of connections. The doubly connected
system already considered will be referred to a pair of parallel axes
coinciding with those already adopted but having their origin at a
general point of coordinates -~,-q, which may be external to the
whole. It is evident that the previously derived formulas, if referred
to moving axes (denotedby x,y), are written by putting in place of
X,y, respectively, x-g, y-~.
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In particular the Airy function will have the expression (see
equations (10) to (12))

[F=~o+~+ ap*2 + P* (x-g) + y-*(y-q) + 5*] log p* + a* cos 26 +

b* sin 2(3-&Mp9* (28)

where p* is the distance between the points of coordinate X,y and

t ,V and 9 is arctan HI.. It should be remarked that the point of
‘-E

coordinates ‘>~ is interior to the hole. The constants U*, B*, T*,
5*, a*, andbi are definedby the same equations (14) except that
x-~, y-q are substituted for x and y and p* for p.

Equation (28) gives a decomposition of the Airy function referred
to a pair of axes x,y completely arbitrary but with ~,q having the
significance of coordinates of a point Q within the hole; this equa-
tion is generalized to the case of plane systems with any order of
connectivity.

The region of definition of the Airy function will now be con-
sidered as a region T bounded by the curve Co and having n holes
bounded by the curves Cl, C2, . . . Cn; Eij vi (i = 1,2, . . . n)
will be taken as the coordinates of a point Qi within the hole
bogndedby Ci (i = 1,2, . . . n).

Setting

Pi2 = (x - gi)z -1-(y - qi)z

19i= arctan y - ~i

‘-~i )

the Airy function in this region, by evident generalization of equa-
tion (28), has the following form
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}“ x
n

ai COS 2ei + hi sin 2Bi - ~ ~(i) 6,
P

i=l

(29)

In this equation, CPo is biharmonic and is regular in the manifold

boundedby Coj Wi(i=l)2, . ..n) is biharmonic outside the hole

boundedby Ci (i = 1~2~ . . . n) and converges at infinity. -

IfXi) Yi(i=l-)2). ..n) are the components of the result-

ant of the external forces applied at th,eboundary of the hole bounded
by Ci ad Mi is their resultant moment with respect to the axis

Mp(i) = (y-Ti)Xioriented as z though Qij - (x-~i)Yi + Mi denotes

the resultant moment applied at Ci with respect to the axis oriented
as z through the point P- (X,y). The constants %) Pi> YiJ ~ij
ai, and bi are determined by the formulas

(30)

where ~ denotes the single-valuedpart of the Airy function.
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It will now be shown that in equation (29) the coefficient10 of
log pi does not depend on Ei, qi, (i = 1,2, . . . n).. .,.

Because of the linearity of the operator ~, the following expres-
sion may be written, for any value of i

Pj-=- 20 [~, X; Ci]+2ti@[T)l;ci]= Fi+2aiti (31)

where

Ti=- 2Q [% x; c“~] (3?)

Similarly

(34)

where ~ denotes the distance from the origin of any

From equations (30.1), (32), (34), and (35), the
sion is immediately obtained

point P = (X,y).

following expres-

(36)

10A similar observation can evidently be made with regard to the
coefficient of log p* in equation (28).

,.,..--,- . ,——. - -.
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with

(37)

On the basis of equations (31), (33), and (36), the following equa-
tion can be written:

Equation (29) can therefore be written as

F=vo+ Lqi+t{EiF+Fix+’iy+5i110gpi+aic0s2e
i=l i=l

bi sin 2@i - &MP 1(i)fji, (39)

The meaning of - ‘-ai) Pij ‘~ remains to be determined. For this

purpose, u~*, VS*, 0s * (s = 1,2, . . . , n) denote the increments

received by u, v, o when a complete turn is made about the hole
boundedby Cs (s = 1, 2, . . ., n) stsrting from the point P = (xjy).
It is evident that, of the terms of the expression equation (29) of the
Airy function, only those of index s contained in the various sums
can make a nonzero contribution to the formation us*~ vs*Y us*

(S=1,2, . ..T n), because the others are regular with all the deriv-
atives in the region bounded by C’ (S= 1)2}. . . j n).

Substantially, the same relation holds ture as in a double con-
* VS*> (D’netted system and the expressions of us , * sre obtained from

those of u*, v*, O* (equation (25)) by simply substituting as, @s,

Ys, Xs, Ys for a, ~, y, X, Y, respectively, and X-gs) Y-7S for

X,y.

N
,—
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*u~=-
[.

1-zfi~ 4as(y-qs)+2Ts-T ,1TIts.,.. E

*
[

12fi~ 4 as (x-g~) + 2 @s
I

1

-Txs, (s=l, z,. ..jn)~s = E -F

(’0s* =8 fi#as

(40)
“*It is then found that us*, vs , us * do not depend on the points

(Es) %,).

In fact, on the
may be written

basis of equations (31) and (33), equations (40)

* k

[

1~ 4a~y+27sus . - zfi-
1

-.-JYS521t

*

[

1 -T2fi&4usx+2~sVs = 1
Xs , (s =1,2, . . . , n)

}

(41)
E -T

from which immediately follows the result: If ‘Zi>~,
the characteristics of a plane dislocation corresponding
goes from Co tOCi(i=l,2, . . ..n) ,

It iS &SO
and the q to

%L=-~ri 8yrk

~-j-.-.&Mi

}

J

and ri are
to a cut that

(42)

clear that the ~i} ~i correspond to parallel fissures
radial fissures.
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From equations (38) and (42) the final result is thus obtained:
The structure of the Airy function corresponding to a general plane
dislocation in an (n+l)-fold connected field is definedby the c

formula: N
r

1~i10g pi+j~i 1cos 2ei + bi sin 29i
i=l

In order
necessary and

that the displacementsbe single-valued, it is evidently
sufficient that

*
‘i =0

*=0
‘i

1

(i=l,2, . . ..n)

*
‘i = o

From equation (41): The necessary and sufficient condition for
the single-valuedness of the displacement in an (n+-l)-foldconnected
plane system is that the following equalities be satisfied:

~=o

(i=l,2, . . ..n)

and therefore the Airy function in the absence of dislocations in am
(n+l)-fold connected field is capable of the decompositionll

llFrom (43) there clesrly results the condition (analogous to that
expressed in the remark of section 5) of the independence of F on the
elastic constants of the system.
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n n
F=~o+~~i+~[5i log Pi+aicos 2di + bi sin 2@ +

. i=l i=l.=

n
1
% z{ (Xi x + Yi y) ~ log Pi - MP(i) ei

i=l }

21

(43)

Re-rk. Equation (42) evidently also gives the expression of the
Airy function in the presence of forces or moments concentrated at
interior points of the plane system. If, for exsJnple,at the point
Q = (E*Jn“) there aCtS a concentrated StT=SS (coTIcen-+=d fOrCI=Or
moment or both systems), one of the terms of the sum in equations (42)
corresponds to it. If this term of the sum is, for example, of index 1,
~1 is biharmonic at the exterior of each circle of center Q, and pl
converges at infinity, then El, al, bl are always defined by equa-

tions (37), (30.5), and (30.6), respectively. In these relations, c1
is any circumference of center Q interior to Co and such as to leave
the regions bounded by Cl, C2, . . . on the outside; xl) Yl, ~ (1)

denote the components of the resultant of the concentrated stress atp Q
and the resultant moment with respect to the straight line oriented as
z through P= (X,y).

7. Mechanical Significance of Coefficients 5, a, b

As evident from the heating of the present section, the case of a
doubly connected field is considered for simplicity,but the extension
to the case of any nuniberof connections will be evident.

The coefficients 5, a, b are not determined, as are u, ~,
and T, by the condition of the problem; they nevertheless have a
mechanical significance that is now given.

It will be shown that these coefficients are expressed in terms of
characteristic elements of the deformation and of the stress such as
the rotation, the coefficient of surface dilatation, and (only for the
coefficient S, however) the astatic coordinates of the external stress
acting on one of the boundaries of the plane system.
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It is first necessary to establish several preliminary formulas.
We set

F**
1

[XY
MP ~

‘z
-y X- M]e =-X

~** 1=lo [F**,@ COS 2(3; C
2

(44)

(45)

From equations (44) and (45), if equation (13) is taken into account,
there is obtained

ti ** yyoY+xoiJ‘z (46)

a** . b**= o (47)

where Xo, yO denote the coordinates of the point P. from which the

path on c begins.

On the basis of equations (10), (11), (14), (44), and (45), and
when the linearity of the operator @ is taken into account, the fol-
lowing relation may be written:

1b=@ [F,P2; c ‘5**

where as when equation (47) is also accounted for,

a. *Q [F, P2 COS 26; c]

b= h[F,P 12sin 2f3;c
2 1

(48)

(49)
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Taking into account equations (2),

7.

J(xd~
)—-y%

c

From equation (50), on the basis of equations (4) and (6) there is
immediately obtained

/’$&ds .xox+yoY+
r

(x~+yyn)ds

(50)

(51)

LI u
c c

When two of,.theastatic coordinates (which two are required is
evident) of the stress acting across c are denoted by a= and ~,

equation (51) can be (see reference 8) written (see also equation (46))

From equation (22.3) there is immediately derived

and also

“*D ““

(52)

(53)

(54)
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where D denotes the divergence of the displacement U,V (coefficient
of surface dilatation).

Mechanical significance of b and of its invariance with resmect
to c* - When equat~on (48) is expressed explicitly, and on the b&is of
=tion (13), the following expression may be written:

Taking into account equations (52) to (54),

or, taking into account equations (52) and (54)

(55)

(56)

Equations (55) and (56) give the required expressions of 5 as a
function of the characteristic elements of the strain and the stress12.

A closed curve c’ of the ssme type as c is now considered and
the area of the band bounded by c and c’ is denoted by Acct.

Also denotedby %, ~ are the two astatic coordinates of the

stress that acts on the bsnd across the cuiwes c and c’ and is
defined by

121f the state of strain is due to a simple plane dislocation on one
of the boundaries, then ~ = ~ = O and it is stificient to eval-
uate 5 corresponding to ~ or ~ to obtain a simpler expression

than equations (55) or (56).
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When 51 denotes the expression
obtained from equations (56) and

ds -
1

X Xn ds

~?

J’
1

(57)

ds - YYn ds

c!

of 5 relative to c’, there is
(57)

+% Y)ds-2J@+’y%)ds -
C

J(P -“)ds+’J’2 bDn ~D
axx+aYy

}

D(xnx+y~)ds +~(%+~)
~1

When the transformation formula of line integrals
integrals is applied to equation (58) and the h=monic
is considered

J
\

6- ~, = E
2fik (T-1 L (%xD ‘Ace’ + Zfi

Acc ,

(58)

into surface
character of D

+ ~) (59)

If ~ denotes the mean value of the linear invariant of the
stress I and the independence of 5 on c in Ace, is accounted
for, there is derived from equations (54) and (59)

~=~+~

Acc r

that is, the invariance of b with respect to c expresses the prop-
erty of the mean stress that assigns the mean value of the linear

—

invariant of the stress13.

13For the properties of the mean of the stress mentioned above see
reference 9.
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Significance of a, b and of their invariance with respect to c. -
On the basis of equations (13) and (49),

When equations (53) and (54) are considered, equations (60) reduce to

or

Ea
,{[

(X2-yz) ~ds -
J

d(x2-y2) D ds
= 16fik(l-T

}

{~=%ds-[~~ds;
1

(62)

b=&

With the aid of eqwtions (61) and (62), a and b are thus
expressed as functions of the rotation and of the coefficient of sur-
face dilatation. It is also found (from equations (60)) that the
invariance of a,b with respect to c is derived from a lmown prop-
erty of harmonic functions.

On the basis of equation (1), the following expression may be
written:
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where ~(x,y) denotes any integrable function of X)y. From equa-
tion (63) there is obtained

Ji&s-J%.s=Jp-*-*+
c cc

Acc,

H a2xx a2YY2
a2x

$ —+—- 1ydAcc,
ayz ax2 *

Acc ,

Taking into account that equation of congruence
which remains in effect
terms of the components
of the second member of

By
is

From equation (64)

in the case of plane systems

(64)

of Saint-Venant
expressed in

of the stress it is seen that the last integral
equation (64) is zero.

there is then obtained

J%ds-)%’s=Jkyy-%xy)++
c c

(65)

taking into account equations (1) and (3), the following expression
obtained from equations (60) and (65) for ~ = X2 - Y2
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1
a-al=— 8X{f (Yyn - ~) ds -~yyn -%) ds - ~ (Yy -~) d Ace,

c e’ Acc,

where evidently a’ denotes the expression of a in correspondence
C’.

By taking into account

mean values of ~, ‘Y ‘n
derived from the invariance

equation (57) and denoting by Xx, Yy
ACC1, the following expression may be

of a and from equation (66):

-~=%x-%yy
Y AccI

from which it is seen that the invariance of a with respect to c
expresses one of the properties of the mean stress.

From
the basis

where the

(66)

with

the

equations (60) and (65), for $ = xy there is obtained, on ‘
of equations (1) and (3)

1
G {f

- (xyn+ y%) ds + /( Xyn + y%) ds + 2 J ~ d Ace,}
c c’ Acct

meaning of b’
(67)

is clear.

The astatic coordinate of diverse indices of the stress acting on
the band bounded by C,C’ across its boundaries is denoted by ~y

and the mean value of ~ in Ace, is denoted by ~y. From the invar-

iance of b and from equation (67) there is immediately obtained, if
the second fundamental equations of statics are taken into account,

It is therefore seen that the invariance of b with respect to c
expresses that property of the mean stress which assigns the mean value
of Xy.
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Remark. If c is assumed to coincide with a circumference14 of
center O and of radius R, equation (55) becomes

2J’t

(68)

and presents 5 as a linear combination of the increment o~ the rota-
tion, because of a turn about the hole, of the mean value D of D on
the circumference c and of two astatic coordinates. Inlarticular if
m= O equation (68) becomes

(69)

and: In the absence of dislocations and in the presence of disloca-
tions that permit single-valued rotation (u= 0), 5 is equal to a
linear combination of the mean value of the coefficient of surface
dilatation along each circumference of center O and of two of the
astatic coordinates of the stress that is transmitted across the cir-
cumference. This linear combination is therefore invariant with respect
to the circutierence.

In particular for a plane system with circular hole subject to a
dislocation that leaves the rotation single-valued (a= O), it is
sufficient from the fact that c is the circumference which bounds the
hole and that correspondingly an = an = O to derive the result that
b expresses, except for an obvious coefficient, the mean value on c
of the surface dilatation.

The same relation holds in the absence of dislocation, provided
the external stress applied at the boundary of the hold satisfies the
condition an = am = O (in particular if the hole is free from exter-
ml stress).

14Naturally for the validity of the remark it is required that
there exist a circumference entirely internal to T. If this is not the
case, the biharmonic function F does not lose significance in a region
T’ comprising T in which circumferences can be drawn; the remark
retains its validity provided the elastic system is considered extended
in T’.

1.
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8. General Expressions of Components of Displacement
in Doubly Connected Field.

From the preceding developments, it is easy to obtain the expres-
sions for the components U,V of the displacement. There is thus the
possibility of considering problems in which the displacements are
assigned on the boundary or mixed problems.

For simplicity, the case of a doubly connected system will be con-
sidered, but it is not difficult to extend the results obtained to sys-
tems of any order of connectivity.

The values assumed by U,V are denoted by U,V when, in equa-
.—

tions (26) and (27), ~o,ql are assumed to be zero in addition to 5,—
a, and b. The expressions of ~,= are obtained from equation (22) by
substituting in them F -~()-g, -Slogp - a cos 2e - b sin 2f3in
place of F. When a rigid -displ–acementis singled out and expres-
sion (26) is assumed for F itself, there is obtained in case (a):

1

[[ 1 [
2 6+EIsin2El +m k.llogp-

‘=X 4 2 1ycos2e+y

[

T-1 T +1

11

rp (3sin (3+ Tcos Ellogp +~cose

{[
hy T+l T-11[ T+l

‘=23’( 1logp-~cos26+~ +m EJ-~sin20

rp
[
- e Cos e + ~sin610gp+T~ 1}sin (3

and in case (b) when the expression (27) is assumed for F,
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u= [[& _X 2(T2-2T-3) log p + (1+T)2 cOS 26 + (1-T)2 - 2(3+T)] +-.

}

sin e
Y(1+T)2 sin 2e - 4(l+T) My

1

Y=
{

& X(1+T)2 sin 26 + Y [2(T2-2T-3) logp - (1+T)2cos2EJ+
[

(1-T)2 -
Cos0

2(3+T)] + 4(1+7) My
}

Next, if u*,v’ denote the values assumed by U,V when F is
identified with 5 log p + a cos 2e + b sin 2@j there is obtained on
the basis of equation (22)

ku’=-
1 1-5(1+T)c09G+4aCOB 0(COE2EJ-7sin29)+2b[(3+T)cos2e+(l-T)eln2e]sine 1

E F

v’=;
[
-5(l+T)sin9+4ssin 9(7c0.s 2 0+(1-T)cos2 0-sin2.9)+2b[(3+T)sin

1
2 e Cose L1P

Finally, if u~~,v” denote the values assumed by U,V when for F
there is assumed W. + ~1,

v= :+V ! ~vtt J
where u~’,v” are given by equation (22) for F = Y. +

It may be useful in many problems to assume for VO

special series expansion in trigonometric binomials. By
the biharmonic functions Vo, 91 can be developed into

verging series, the first at each point at infinity, and
p>o

and CP1 a

known theorems,
uniformly con-

the second for
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where

(70)

Tin = ain cos ne + bin sin ne (i = l,2,3,4;n = 0,1,...) (71)

In the series (70.2), the term T42 of the type a cos2e+lIsinze~
already separately considered, has been suppressed. It is sufficient
to substitute equation (70) into equation (22) to obtain

3 n=2,3,...

z z

*
U1’

= ‘“20 + ‘“ii + ‘“in
i=l i=l 4)*”*

3 n=2,3,...

E E

*
v“

= ‘“20 +
v“ + v“

il in
i=l i=l,...4

(72)

with
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{ “’ “-
[ 1

d TlnUffIn = . $ (T+l)pn-ln Tln cos 0 - sin e ~

‘“in = [
-.$ (7+l)pn-1 n Tln sin e + cos e ~ 1

(n= 1,2,... )

1

L, (I-1= 0,1,2,... ) }( )73

/

[ 1u“3n=$ (T+l)p-(n+l)nT3ncos 19+ sine%

(n=l,2,...)

[ [
= $ (T+l)p-(n+l)n T3n~in e -

d T3n
“~3n Cos e —

de 1

[{

. ~ l-n
‘“4n E p [$ - (T+I)~OS e ~ +L4-(2-n)(T+l)]sin e T4n

(n =3,4,...) J

The asterisk on the summation signs ,denotethat the term of index 4,2
is not considered. It i necessary moreover to consider that for n = O

~Tthe terms that contain ~ are suppressed in equation (73).

Translated by S. Reiss
National Advisory Committee
for Aeronautics.
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